Nikou, Roshan

```
From:
Sent: Wednesday, December 03, 2008 10:20 AM
T0:
Cc:
Subject:
Graduate.Council.Web.Site@www.uky.edu
Nikou, Roshan
Price, Cleo
Investigator Report
AnyForm User: www.uky.edu
AnyForm Document: http://www.research.uky.edu/gs/GCInvestigatorReport.htmi
AnyForm Server: www.uky.edu (/www/htdocs/AnyFormTurbo/AnyForm.php)
Client Address: 76.177.13.44
College/Department/Unit: =BST701
Category:_ = New
Date_for_Council_Review: \(=12 / 4 / 2008\)
Recommendation_is:_ = Approve
Investigator: = Kert Viele
E-mail_Address = viele@uky.edu
1 Modifications: =
2_Considerations: = Course appears straightforward and useful. I recommend approval
3_Contacts: = Adam Branscum general discussion
4_Additional_Information: =
AnyForm/PHP3 0.1
```

AnyFormRandomSeqNo: 36508096

APPLICATION FOR NEW COURSE

1. Submitted by the College of Public Health

Date: March 10, 2008

Department/Division proposing course: Biostatistics
2. Proposed designation and Bulletin description of this course:
a. Prefix and Number BST 701
b. Title* Bayesian Modeling in Biostatistics
*If title is longer than 24 characters, write a sensible title (24 characters or less) for use on transcripts: Bayesian Biostatistics
c. Courses must be described by at least one of the categories below. Include the number of actual contact hours per week for each category, as applicable.
\qquad) CLINICAL (__) COLLOQIUM \qquad DISCUSSION
(1) LABORATORY
2.5 LECTURE
() INDEPEND. STUDY \qquad) PRACTICUM \qquad) RECITATION \qquad) RESEARCH \qquad) RESIDENCY
(__) SEMINAR \qquad
d. Please choose a grading system:区 Letter (A, B, C, etc.) Pass/Fail
e. Number of credit hours: 3 3
f. Is this course repeatable? $\mathrm{ES} \quad \square$ NO \boxtimes If ES, maximum number of credit hours: \qquad
g. Course description:

TThis course provides an introduction to Bayesian ideas and data analysis applied to the biosciences. The course
illustrates current approaches to Bayesian modeling and computation in biostatistics.
h. Prerequisite(s), if any:
required: BST 760 (Advanced Regression) and BST 676 (Biometrics II) or equivalent
i. Will this course be offered through Distance Learning?

If ES, please circle one of the methods below that reflects how the majority of the course content will be delivered:
$\begin{array}{ccccc}\begin{array}{c}\text { Internet/Web- } \\ \text { based }\end{array} & \begin{array}{c}\text { Interactive } \\ \text { video }\end{array} & \text { Extended campus } & \begin{array}{c}\text { Kntucky Educational Television } \\ \text { (KT/teleweb) }\end{array} & \text { Other }\end{array}$
Please describe "Other":
3. Teaching method: $\boxtimes N / A$ or
rCommunity-Based ExperienceService Learning Component Both
4. To be cross-listed as:

Prefix and Number
Signature of chair of cross-listing department
5. Requested effective date (term/year):

Spring / 2011

APPLICATION FOR NEW COURSE

6．Course to be offered（please check all that apply）：\square Fall \boxtimes spring \square Summer
7．Will the course be offered every year？ YE

If NO，please explain：This course will be offered once every three semesters．

8．Why is this course needed？
This course is a requirement in the proposed PhD in Epidemiology／Biostatistics．

9．a．By whom will the course be taught？Adam Branscum or Chong Wang
b．Are facilities for teaching the course now available？
区 FS
NO
If $N O$ ，what plans have been made for providing them？

10．What yearly enrollment may be reasonably anticipated？
5－10 students

11．a．Will this course serve students primarily within the department？
区 $\quad \square \mathrm{N}$
b．Will it be of interest to a significant number of students outside the department？
区 KS
NO If ES，please explain．
The course will be a requirement for the proposed Ph．D．in Epidemiology／Biostatistics．Some of the students in that program may consider Epidemiology their home department．

12．Will the course serve as a University Studies Program course † ？
If ES，under what Area？
${ }^{\dagger}$ AS OF SPRING 2007，THERE IS A MORATORIUM ON APPROVAL OF NEW COURSES FOR USP．

13．Check the category most applicable to this course：
\boxtimes traditional－offered in corresponding departments at universities elsewhere
\square relatively new－now being widely established
\square not yet to be found in many（or any）other universities
14．Is this course applicable to the requirements for at least one degree or certificate at UR
15．Is this course part of a proposed new program？
If $\mathbb{E S}$ ，please name：\quad PhD in Epidemiology and Biostatistics
16．Will adding this course change the degree requirements for ANYrogram on campus ？
If $\mathbb{E S} \ddagger$ list below the programs that will require this course： If IS ${ }^{\ddagger}$ ，list below the programs that will require this course：

APPLICATION FOR NEW COURSE

${ }^{\ddagger}$ In order to change the program (s), a program change forms) must also be submitted.
17. \boxtimes The major teaching objectives of the proposed course, syllabus and/or reference list to be used are attached.

Check box if If the course is 400 G - or $500-\mathrm{level}$, you must include a syllabus showing differentiation for undergraduate
18. \square course is and graduate students by (i) requiring additional assignments by the graduate students; and/or (ii) the 400 G or 500 . establishment of different grading criteria in the course for graduate students. (See SR 3.1.4)
19. Within the department, who should be contacted for further information about the proposed new course?

Name: \qquad Phone: 257.1476

Email: abran3@email.uky.edu
20. Signatures to report approvals:
$\frac{4}{\text { DATE of Approval by Department Faculty }}$
$6-26-08$
DATE of Approval by College Faculty

* DATE of Approval by Undergraduate Council
* DÁTE of Approval by Graduate Council

printed name \quad / \quad Reported by Undergraduate Council Chair \quad signature

* DATE of Approval by Health Care Colleges Council (HCCC)
* DATE of Approval by Senate Council
* DATE of Approval by University Senate

Reported by Office of the Senate Council

Reported by Office of the Senate Council
*If applicable, as provided by the University Senate Rules. (http://www.uky.edu/USC/New/RulesandRegulationsMain.htm)

BST 701: Bayesian Modeling in Biostatistics

Course Description: This course provides an introduction to Bayesian ideas and data analysis applied to the biosciences. The course illustrates current approaches to Bayesian modeling and computation in statistics. The course will cover the following topics: Bayesian philosophy, prior, posterior and predictive distributions and inference, one and two population models based on normal, binomial, Poisson, and survival distributions, conjugate, informative, and reference prior distributions, linear and generalized linear models, survival analysis, ANOVA, missing data, diagnostics and model selection, aspects of modern Bayesian computational methods including Markov chain Monte Carlo methods (Gibbs sampler and Metropolis Hastings algorithm) and their implementation and monitoring, with applications to biomedical data analysis.

Course Structure: 3 credit hours (2.5 hours of lecture, 1 hour of laboratory)
Prerequisites: BST 760 (Advanced Regression) and BST 676 (Biometrics II) or equivalent.

Initial Offering: Spring 2011
Philosophical Statement: Statistical models are developed for the purpose of addressing scientific questions. For each scientific question that is posed and for which data are collected, the truth is sought by developing statistical models that are useful in this regard. Bayesian statistics represents one of the major approaches to the whole of statistical modeling. Through hands-on experience with real data from a variety of applications, students will learn the basics of designing and carrying out Bayesian analysis, and interpreting and communicating the results. BST 701 will provide students an introduction to practical Bayesian methods for biostatistics data analysis, and illustrate the utility of the Bayesian philosophy in public health. While aimed at biomedical scientists, the methods presented apply to all disciplines in which data are collected to address scientific hypotheses. BST 701 has methodological, computational, and data analysis components. Although statistical methodology will be presented to the extent needed for students to understand the models and methods, the course emphasizes practical applications over theory.

Objectives: On successful completion of the course, students will be able to

1. understand the Bayesian approach to statistical data analysis and how it compares to other modes of statistical inference
2. design, develop and implement Bayesian methods to address biomedical hypotheses
3. incorporate prior information into statistical inferences
4. make posterior inferences on parameters of scientific interest
5. conduct Bayesian analyses of complex biostatistics data sets
6. create WinBUGS programs to fit Bayesian models
7. interpret and communicate results from Bayesian data analysis

References: Lecture notes will be provided by the instructor. One of the following may be used as the official textbook:

1. Gelman, A, Carlin, J, Stern, H, Rubin, D (2004). Bayesian Data Analysis. Chapman \&all.
2. Carlin, B, Louis, T (2000). Bayes and Empirical Bayes Methods for Data Analysis. Chapman \&iall.

Detailed Outline:

I. Fundamentals of Bayesian Biostatistics

Why Bayesian statistics? Approaches to statistical inference and an overview of Bayesian ideas
Probability review
Prior distributions
Likelihood
Bayesian inference: point and interval estimation, hypothesis testing, prediction
Single parameter models: binomial data, Poisson data, normal data
Two sample problems
Comparing means, proportions, rates, median survival times Effect measures: relative means, mean difference, odds ratio, risk ratio, risk difference, rate ratios, and median time to event, survival probabilities
Multivariate normal models, Wishart distribution and Jeffreys' prior Introduction to the WinBUGS software
II. Bayesian Computation

Monte Carlo integration, Law of Large Numbers, asymptotic approximations
Markov chain Monte Carlo (MCMC) algorithms: Gibbs sampling, Metropolis-Hastings
Adaptive rejection sampling
Slice sampling
WinBUGS for Gibbs sampling
Convergence monitoring and diagnosis: multiple starting values, GelmanRubin diagnostic, autocorrelation function, thinning, initial values Inference from MCMC: method of composition, credible intervals, HPD intervals, posterior density estimation, posterior errors.

III. Bayesian Regression

Likelihood construction
Normal regression: Bayesian linear model
Bayesian ANOVA and MANOVA
Bayesian Generalized Linear Models
Logistic regression
Poisson regression
Negative binomial regression
Bayesian residuals
Survival Analysis
Cox proportional hazards models
Accelerated failure time models
Prior distributions: Data augmentation priors and conditional meanspriors
WinBUGS implementations
IV. Model SelectionBayes information criterion (BIC)Deviance information criterion (DIC)
Bayes factors
Savage-Dickey ratio
Pseudo marginal likelihoods and Bayes factors
Bayesian model averaging
Reversible jump MCMC
Predictive model selection
Assessment: Grades will be based on problem sets and lab assignments (50\%), a finalexamination (25%) and class project (25%).
Grading Scale:

Grade	$\%$
A	$90-100$
B	$80-89$
C	$70-79$
E	$60-69$

From:	Brothers, Sheila C
Sent:	Monday, September 22, 2008 8:42 AM
To:	LaRoche, Adrea S.
Subject:	FW: HCCC Transmittal - Program Change: MS in Athletic Training
Attachments:	PhD Epi Bio Final Signatures.pdf; FW: important-EPI 714; FW: regarding the New Program
	Proposal for the PhD in Epidemiology and Biostatistics
Follow Up Flag:	Follow up
Flag Status:	Flagged
Categories:	Curricular Items

Don't let the subject line fool you - this is for a PhD in Epidemiology.
Sheila

Office of the Senate Council

Phone: (859) 257.5872
From: Lindsay, Jim D.
Sent: Friday, September 19, 2008 2:20 PM
To: Nikou, Roshan; Jackson, Brian A
Cc: Brothers, Sheila C; Anderson, Heidi Milia; Flanagan, Rebecca; Alexander, Linda A; Kryscio, Richard
Subject: RE: HCCC Transmittal - Program Change: MS in Athletic Training
September 19th, 2008
TRANSMITTAL
TO: Brian Jackson, Roshan Nikou Graduate Council
FROM: Jim Lindsay Health Care Colleges Council

At its August 19th 2008 meeting, the Health Care Colleges Council approved the following proposal and is now forwarding it to the Graduate Council to approve:

College of Public Health
New Program: Ph.D. in Epidemiology
Attached are the materials to implement the requested action.

cc: Linda Alexander
 Becki Flanagan
 Richard Kryscio
 Shelia Brothers
 Heidi Anderson

Jim Lindsay

Health Care Colleges Council Coordinator Associate Provost for Faculty Affairs Office University of Kentucky, 205 Frazee Hall Lexington, KY 40506-0031 Ph. (859) 323.6638
www.uky,edu/Provost/AcademicCouncil/Council.php

APPLICATION FOR NEW COURSE

1. Submitted by the College of Public Health

Date: March 10, 2008

Department/Division proposing course: Biostatistics
2. Proposed designation and Bulletin description of this course:
a. Prefix and Number BST 701
b. Title Bayesian Modeling in Biostatistics
*If title is longer than 24 characters, write a sensible title (24 characters or less) for use on transcripts: Bayesian Biostatistics
c. Courses must be described by at least one of the categories below. Include the number of actual contact hours per week for each category, as applicable.
(__) CLINICAL \qquad) COLLOQUIUMDISCUSSION
(1) LABORATORY
(2.) LECTURE
(__) INDEPEND. STUDY
(_) PRACTICUM \qquad) RECITATION \qquad) RESEARCH
(__) SEMINAR \qquad) STUDIO \qquad) OTHER - Please explain: \qquad
d. Please choose a grading system: \boxtimes Letter (A, B, C, etc.) \square Pass/Fail
e. Number of credit hours: 3 \qquad
f. Is this course repeatable? YES \square NO \boxtimes If YES, maximum number of credit hours: \qquad
g. Course description:

This course provides an introduction to Bayesian ideas and data analysis applied to the biosciences. The course
illustrates current approaches to Bayesian modeling and computation in biostatistics.
h. Prerequisite (s), if any:
required: BST 760 (Advanced Regression) and BST 676 (Biometrics II) or equivalent
i. Will this course be offered through Distance Learning?

YES
NO
If YES, please circle one of the methods below that reflects how the majority of the course content will be delivered:
$\begin{array}{ccccc}\text { Internet/Web- } & \text { Interactive } & \text { Extended campus } & \text { Kentucky Educational Television } \\ \text { based } & \text { video } & \text { (KET/teleweb) } & \text { Other }\end{array}$
Please describe "Other":
3. Teaching method: $\boxtimes \mathrm{N} / \mathrm{A}$ orCommunity-Based ExperienceService Learning ComponentBoth
4. To be cross-listed as:

Prefix and Number
Signature of chair of cross-listing department
5. Requested effective date (term/year):

Spring / 2011

APPLICATION FOR NEW COURSE

6. Course to be offered (please check all that apply): \square Fall \boxtimes Spring \square Summer
7. Will the course be offered every year?

If NO, please explain: This course will be offered once every three semesters.
8. Why is this course needed?

This course is a requirement in the proposed PhD in Epidemiology/Biostatistics.
9. a. By whom will the course be taught? Adam Branscum or Chong Wang
b. Are facilities for teaching the course now available? \boxtimes YES \square NO If NO, what plans have been made for providing them?
10. What yearly enrollment may be reasonably anticipated?

5-10 students
11. a. Will this course serve students primarily within the department?
\boxtimes Yes \square No
b. Will it be of interest to a significant number of students outside the department?

区 YES NO If YES, please explain.
The course will be a requirement for the proposed Ph.D. in Epidemiology/Biostatistics. Some of the students in that program may consider Epidemiology their home department.
12. Will the course serve as a University Studies Program course ${ }^{\dagger}$?

YES
NO
If YES, under what Area?
${ }^{\dagger}$ AS OF SPRING 2007, THERE IS A MORATORIUM ON APPROVAL OF NEW COURSES FOR USP.
13. Check the category most applicable to this course:

【 traditional - offered in corresponding departments at universities elsewhere
\square relatively new - now being widely established
\square not yet to be found in many (or any) other universities
14. Is this course applicable to the requirements for at least one degree or certificate at UK?
\boxtimes Yes \square No
15. Is this course part of a proposed new program?
\boxtimes YES \square NO
If YES, please name: $\quad \mathrm{PhD}$ in Epidemiology and Biostatistics
16. Will adding this course change the degree requirements for ANY program on campus? If YES ${ }^{\ddagger}$, list below the programs that will require this course:

APPLICATION FOR NEW COURSE

\# In order to change the programs), a program change forms) must also be submitted.
17. \boxtimes The major teaching objectives of the proposed course, syllabus and/or reference list to be used are attached.

Check box if If the course is 400G- or 500-level, you must include a syllabus showing differentiation for undergraduate
18. course is 400 G or 500 . and graduate students by (i) requiring additional assignments by the graduate students; and/or (ii) the establishment of different grading criteria in the course for graduate students. (See SR 3.1.4)
19. Within the department, who should be contacted for further information about the proposed new course?

Name: Adam Branscum
Phone: 257.1476
Email: abran3@email.uky.edu
20. Signatures to report approvals:
$\frac{4}{\text { DATE of Approval by Department Faculty }}$
$\frac{0-20-08}{\text { DATE of Approval by College Faculty }}$

DATE of Approval by College Faculty

* DATE of Approval by Undergraduate Council
* DATE of Approval by Graduate Council

* DATE of Approval by Health Care Colleges Council (HCCC)
* DATE of Approval by Senate Council
* DATE of Approval by University Senate

printed name . Reported by Undergraduate Council Chair signature

Reported by Office of the Senate Council

Reported by Office of the Senate Council
*If applicable, as provided by the University Senate Rules. (http://www.ukv.edu/USC/New/RulesandRegulationsMain.htm)

BST 701: Bayesian Modeling in Biostatistics

Course Description: This course provides an introduction to Bayesian ideas and data analysis applied to the biosciences. The course illustrates current approaches to Bayesian modeling and computation in statistics. The course will cover the following topics: Bayesian philosophy, prior, posterior and predictive distributions and inference, one and two population models based on normal, binomial, Poisson, and survival distributions, conjugate, informative, and reference prior distributions, linear and generalized linear models, survival analysis, ANOVA, missing data, diagnostics and model selection, aspects of modern Bayesian computational methods including Markov chain Monte Carlo methods (Gibbs sampler and Metropolis Hastings algorithm) and their implementation and monitoring, with applications to biomedical data analysis.

Course Structure: 3 credit hours (2.5 hours of lecture, 1 hour of laboratory)
Prerequisites: BST 760 (Advanced Regression) and BST 676 (Biometrics II) or equivalent.

Initial Offering: Spring 2011

Philosophical Statement: Statistical models are developed for the purpose of addressing scientific questions. For each scientific question that is posed and for which data are collected, the truth is sought by developing statistical models that are useful in this regard. Bayesian statistics represents one of the major approaches to the whole of statistical modeling. Through hands-on experience with real data from a variety of applications, students will learn the basics of designing and carrying out Bayesian analysis, and interpreting and communicating the results. BST 701 will provide students an introduction to practical Bayesian methods for biostatistics data analysis, and illustrate the utility of the Bayesian philosophy in public health. While aimed at biomedical scientists, the methods presented apply to all disciplines in which data are collected to address scientific hypotheses. BST 701 has methodological, computational, and data analysis components. Although statistical methodology will be presented to the extent needed for students to understand the models and methods, the course emphasizes practical applications over theory.

Objectives: On successful completion of the course, students will be able to

1. understand the Bayesian approach to statistical data analysis and how it compares to other modes of statistical inference
2. design, develop and implement Bayesian methods to address biomedical hypotheses
3. incorporate prior information into statistical inferences
4. make posterior inferences on parameters of scientific interest
5. conduct Bayesian analyses of complex biostatistics data sets
6. create WinBUGS programs to fit Bayesian models
7. interpret and communicate results from Bayesian data analysis

References: Lecture notes will be provided by the instructor. One of the following may be used as the official textbook:

1. Gelman, A, Carlin, J, Stern, H, Rubin, D (2004). Bayesian Data Analysis. Chapman \& Hall.
2. Carlin, B, Louis, T (2000). Bayes and Empirical Bayes Methods for Data Analysis. Chapman \& Hall.

Detailed Outline:
I. Fundamentals of Bayesian Biostatistics

Why Bayesian statistics? Approaches to statistical inference and an overview of Bayesian ideas
Probability review
Prior distributions
Likelihood
Bayesian inference: point and interval estimation, hypothesis testing, prediction
Single parameter models: binomial data, Poisson data, normal data
Two sample problems
Comparing means, proportions, rates, median survival times Effect measures: relative means, mean difference, odds ratio, risk ratio, risk difference, rate ratios, and median time to event, survival probabilities
Multivariate normal models, Wishart distribution and Jeffreys' prior Introduction to the WinBUGS software
II. Bayesian Computation

Monte Carlo integration, Law of Large Numbers, asymptotic approximations
Markov chain Monte Carlo (MCMC) algorithms: Gibbs sampling, Metropolis-Hastings
Adaptive rejection sampling
Slice sampling
WinBUGS for Gibbs sampling
Convergence monitoring and diagnosis: multiple starting values, GelmanRubin diagnostic, autocorrelation function, thinning, initial values Inference from MCMC: method of composition, credible intervals, HPD intervals, posterior density estimation, posterior errors.
III. Bayesian Regression

Likelihood construction
Normal regression: Bayesian linear model
Bayesian ANOVA and MANOVA
Bayesian Generalized Linear Models
Logistic regression
Poisson regression

Negative binomial regression
Bayesian residuals
Survival Analysis
Cox proportional hazards models
Accelerated failure time models
Prior distributions: Data augmentation priors and conditional means priors
WinBUGS implementations
IV. Model Selection

Bayes information criterion (BIC)
Deviance information criterion (DIC)
Bayes factors
Savage-Dickey ratio
Pseudo marginal likelihoods and Bayes factors
Bayesian model averaging
Reversible jump MCMC
Predictive model selection
Assessment: Grades will be based on problem sets and lab assignments (50\%), a final examination (25%) and class project (25%).

Grading Scale:

Grade	$\%$
A	$90-100$
B	$80-89$
C	$70-79$
E	$60-69$

